
11

CMSC 449
Malware Analysis

Lecture 7
x86 Assembly



2

▪ EAX

▪ EBX

▪ ECX

▪ EDX

General Purpose Registers
(AL, AH, AX)

(BL, BH, BX)

(CL, CH, CX)

(DL, DH, DX)

Stores return value

Loop counter

Used with EAX in multiplication, 
division



3

▪ ESI

▪ EDI

▪ ESP

▪ EBP

More General Purpose Registers
Source pointer

Destination pointer

Stack pointer

Base pointer



4

▪ EIP

▪ EFLAGS
❑ ZF
❑ CF
❑ OF

Other Registers
Instruction pointer

Status register
Zero Flag
Carry Flag
Overflow Flag



5

▪ MOV EAX, EBX

▪ MOV EAX, 0x0

▪ MOV EAX, [0x400000]

▪ MOV EAX, [EBX + ESI * 4]

MOV



6

▪ “Load Effective Address”
▪ Moves a pointer into a register, does not dereference

▪ LEA EAX,  [EBX + 8] Puts EBX + 8 into EAX

▪ MOV EAX, [EBX + 8] Dereferences EBX + 8 and
puts value into EAX

LEA



7

_start:   mov       ebx, message

lea       eax, [ebx]

mov       ecx, [ebx]

section   .data

message:  db "Hello, World", 10

LEA vs MOV

Presenter Notes
Presentation Notes
EAX: 0x402000 ("Hello, World\n")EBX: 0x402000 ("Hello, World\n")ECX: 0x57202c6f6c6c6548 ('Hello, W')



8

▪ ADD EAX, 0x10

▪ SUB EAX, EBX

▪ INC EAX

▪ DEC EAX

Arithmetic Instructions



9

▪ MOV EAX,  0x2 Multiples EAX by 4, stores upper 32
MUL 0x4 bits in EDX and lower 32 bits in EAX

▪ MOV EDX, 0x0 Divides EDX:EAX by 3, stores
MOV EAX, 0x9 result in EAX and remainder in EDX
DIV 0x3

More Arithmetic Instructions



10

▪ XOR EAX, EAX

▪ AND EAX, 0xFF

▪ OR EAX, EBX

Logical Operator Instructions



11

▪ SHL EAX, 0x2

▪ SHR EAX, EBX

▪ ROL EAX, 0x4

▪ ROR EAX, EBX

Bit Shifting Instructions

Presenter Notes
Presentation Notes
SHR rightmost bit stored in carry flagSAR restores MSBSHL and SAL are the sameRCL and RCR also use the carry flag



12

▪ CMP EAX,  EBX

▪ TEST EAX,  0x10

▪ TEST EAX,  EAX

Conditional Instructions

Presenter Notes
Presentation Notes
Test - performs bitwise and on two operands, so the reason you see TEST EAX, EAX is because it sets the zero flag to one, which allows you to jumpCMP - actually does subtraction sets flags according to result, why if zero they’re equal



13

▪ JMP LOC Unconditional jump
▪ JZ / JE LOC Jump if ZF == 1
▪ JNZ / JNE LOC Jump if ZF == 0
▪ JG / JA LOC Jump if DST > SRC
▪ JL / JB LOC Jump if DST < SRC
▪ JGE / JAE LOC Jump if DST >= SRC
▪ JLE / JBE LOC Jump if DST <= SRC

Branching Instructions



14

▪ Used for making common loop constructions more efficient
❑ Increment ESI and EDI pointers, decrement ECX in a loop

▪ REP -> Stop when ECX = 0

▪ REPE (Repeat equal) -> Stop when ECX = 0 or ZF = 0

▪ REPNE (Repeat not equal) -> Stop when ECX = 0 or ZF = 1

REP Instructions



15

▪ REPE CMPSB Compare ESI and EDI buffers

▪ REP STOSB Initialize all bytes of EDI buffer to the
value stored in AL

▪ REP MOVSB Copy contents of ESI to EDI

▪ REPNE SCASB Search EDI for the byte in AL

Common REP Instructions



16

PUSH in Assembly Language
▪ What does PUSH actually do?

▪ PUSH myVal
❑ SUB ESP, 4

❑ MOV [ESP], myVal

Subtract 4 from the stack pointer 
(“make room” on the stack)

Copy the value into that 
new space on the stack



17

POP in Assembly Language
▪ What does POP actually do?

▪ POP myRegister
❑ MOV myRegister, [ESP]

❑ ADD ESP, 4

Add 4 to the stack pointer 
(move the stack back “up”)

Copy the value off the 
stack into the register



18

CALL in Assembly Language
▪ What does CALL actually do?

▪ CALL myFunc
❑ PUSH &nextInstruction

▪ SUB ESP, 4
▪ MOV [ESP], &nextInstruction

❑ JMP myFunc
Jump to where the function 
you’re calling resides in memory

Push the address in memory 
you’ll want to return to



19

RET in Assembly Language
▪ What does RET actually do?

▪ RET
❑ POP EIP

▪ Trusting that whatever’s at the top 
of the stack is the return address
❑ When you execute the next instruction 

it looks at EIP to see what to do next

Pop the return address into EIP



20

What is Cdecl?
▪ The calling convention for the C programming language 

▪ Calling conventions determine
❑ Order in which parameters are placed onto the stack
❑ Which registers are used/preserved for the caller
❑ How the stack in general is handled



21

Simple Cdecl Example – Code
 What actually happens 

on the stack when this 
program is run?

 What variables are 
allocated first?

 How does the stack 
grow?

int myFunc(char *par1, int par2)
{

char local1[64];
int local2;
return 0;

}

int main(int argc, char **argv)
{

myFunc(argv[1], atoi(argv[2]);
return 0;

}



22

Simple Cdecl Example – Calling
Previous function’s 

Stack Frame (local vars, etc.)
par2
par1

Return Address (from EIP)

local1

local2

Previous function’s EBP

 PUSH par2
 PUSH par1
 PUSH EIP
 PUSH EBP
 MOV EBP, ESP
 SUB ESP, 68

 64 bytes for chars
 4 bytes for integer

 ESP

 EBP



23

Simple Cdecl Example – Returning

 MOV ESP, EBP

 POP EBP

 RETN (POP EIP)

Previous function’s 
Stack Frame (local vars, etc.)

par2
par1

Return Address (from EIP)

local1

local2

Previous function’s EBP

 ESP

 EBPThe caller handles 
popping parameters 
upon return.


	CMSC 449�Malware Analysis
	General Purpose Registers
	More General Purpose Registers
	Other Registers
	MOV
	LEA
	LEA vs MOV
	Arithmetic Instructions
	More Arithmetic Instructions
	Logical Operator Instructions
	Bit Shifting Instructions
	Conditional Instructions
	Branching Instructions
	REP Instructions
	Common REP Instructions
	PUSH in Assembly Language
	POP in Assembly Language
	CALL in Assembly Language
	RET in Assembly Language
	What is Cdecl?
	Simple Cdecl Example – Code
	Simple Cdecl Example – Calling
	Simple Cdecl Example – Returning

